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Abstract
According to the Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY)
theory a two-dimensional (2D) crystal melts when bound pairs of dislocations
dissociate into single dislocations. The temperature at which dislocation pairs
unbind can be identified by means of the Young’s modulus K passing through
16π . In a previous paper (von Grünberg et al 2004 Phys. Rev. Lett. 93 255703)
we analysed video-microscopy data of 2D colloidal crystals, obtained elastic
constants from normal-mode band-structures, and confirmed that the unbinding
temperature is indeed close to the melting temperature. Processing the same
data we now obtain elastic constants directly from an analysis in real space by
computing relative mean-square displacements as a function of the lattice site
separation. We have also carried out Monte Carlo simulations to check for the
thermal softening of the colloidal crystal. Both studies confirm our previous
results. We finally compare our results to the corresponding curves for a 2D
electron solid on the surface of liquid helium.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In two-dimensional (2D) crystals melting may occur via two consecutive Kosterlitz–Thouless-
type [1] transitions. The first of these transitions takes the solid to a hexatic phase [2]. While
in the 2D crystal the positional correlation function exhibits a power law decay, in the hexatic
phase, like in the fluid phase, this correlation function decays exponentially. However, the
correlation function of the orientational order parameter retains an algebraic decay in the
hexatic phase. Only via a second Kosterlitz–Thouless-type transition does the system become
an ordinary fluid where all correlation functions have an exponential decay. This two-stage
scenario of 2D melting is described by Halperin, Nelson and Young [2, 3], and is also known as
KTHNY theory (Kosterlitz, Thouless, Halperin, Nelson and Young). The two-stage KTHNY
melting scenario describes only one way in which a 2D crystal could melt; others are possible.
It is however clear by now that KTHNY melting takes place only in crystals with sufficient
rotational stiffness, as has been clarified by a simple lattice defect model [4]. Detailed reviews
of the extensive literature on this theory are available [5, 6].
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According to the KTHNY theory the translational symmetry of the crystal is destroyed by
free dislocations. These dislocations stem from a dissociation of bound dislocation pairs
(having a pair distance R) which are usually present in warm crystals. The dislocation
unbinding temperature, i.e. the temperature where 〈R2〉 → ∞, is reached when the Young’s
modulus

K (T ) = 4µ(T )a2
0

kT

λ(T ) + µ(T )

λ(T ) + 2µ(T )
, (1)

passes through 16π [6]. Here λ and µ are the Lamé coefficients, and a0 is the lattice constant
of the 2D crystal. On the other hand, the real melting temperature Tm can be inferred from the
behaviour of the correlation functions. So, it is clear that the KTHNY melting scenario can only
be a correct description provided that indeed K (T ) passes through 16π just at a temperature
which from an analysis of the correlation functions is known to be the melting temperature. We
should remark that this is only a necessary condition for a KTHNY melting, but not necessarily
a sufficient one. Therefore, provided the KTHNY theory applies, the unbinding temperature
must be equal to the melting temperature, that is

lim
T →T −

m

K (T ) = 16π. (2)

We remark that the renormalized elastic constants are to be taken in (1). The renormalization of
the constants takes account of the dislocation-induced softening of the crystal which ultimately
causes melting. Differential equations to compute the renormalized elastic constants from the
constants of the defect-free crystal can be found in [2].

In a recent paper [7], we have been able to verify (2) for a 2D colloidal system by analysing
real-space video-microscopy data. Here we add two observations that are needed to complete
the conclusions drawn in [7]. (i) Throughout [7] we have assumed elastic constants at T = 0
for the defect-free crystal. However, in real crystals the constants soften not only due to defects
but also due to phonon–phonon interactions (thermal softening [6]). By means of Monte Carlo
(MC) simulation, we here check for the effect of thermal softening. (ii) In [7] real-space data
are first transformed to q-space, and the elastic constants are then obtained from an analysis of
the q → 0 behaviour of the elastic band-structure, following a method suggested in [8]. We
now obtain elastic constants from a more direct analysis in real space which uses an information
contained in the distance dependence of the mean-square relative displacement. We process
the same data as in [7], and show that in real space they satisfy a relation similar to (2), too.

2. Simulation: temperature dependence of the elastic constants

The colloids used in [7] interact via a repulsive pair-potential, u(r), which reads

βu(r) = �

(
√

πρr)3
. (3)

Here, r refers to the inter-particle distance, � represents a dimensionless interaction amplitude
and ρ denotes the particle area density. The interaction potential, u(r), is measured in units
of kT [β = 1/(kT )], with Boltzmann constant k and temperature T . One may interpret �

as a reduced inverse temperature T ∗ := 1/�. Moreover, � is the only parameter controlling
the phase behaviour of the system. For a system describable by equation (3), the melting
temperature, T ∗

m = 1/�m, was found experimentally to be 1/60 [10]. For � > 60, the
colloidal system forms a hexagonal crystal.

Experimentally the potential in equation (3) can be realized by using spherical, super-
paramagnetic colloids confined to a water/air interface [9]. Applying a magnetic field B
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Table 1. Conversion table.

Parameter Conversion factor Parameter Conversion factor

Length r → r/a0 Density ρ∗ := ρa2
0 = 2/

√
3

Area A∗ := A/a2
0 Temperature T ∗ := 1/�

Energy E∗ := βE/� Pressure p∗ := βpa2
0/�

Lamé constants λ∗ := βλa2
0/� µ∗ := βµa2

0/�

perpendicular to the water/air interface induces a linearly-dependent magnetic dipole moment
leading to the interaction potential in (3), with � = (βµ0/4π)(χ B)2(

√
πρ)3 and µ0, χ

denoting the absolute magnetic permeability and the susceptibility. Thus by tuning B one
can easily control the interaction amplitude of the colloids. Such systems have been widely
tested and are established as almost ideal 2D models [8, 7, 9–11]. We therefore refer to the
aforementioned literature for experimental details. For all that follows we shall use reduced
variables. Except for distances we will mark these reduced quantities with asterisks. Table 1
lists the corresponding conversion factors.

There are various ways to determine elastic constants by MC simulation [12]. For cubic
crystals, in which particles interact with pairwise forces, Squire et al [13] have derived exact
expressions for the three independent isothermal elastic constants, CT ∗

11 , CT ∗
12 , and CT ∗

44 . These
quantities are connected to the Lamé constants via

λ∗ + 2µ∗ = CT ∗
11 − p∗, λ∗ = CT ∗

12 + p∗, µ∗ = CT ∗
44 − p∗. (4)

Here p∗ = ρ∗T ∗ + 〈W ∗〉/A∗ denotes the pressure, which may be calculated via the internal
virial, 〈W ∗〉, ρ∗ presents the particle density, T ∗ the temperature, and A∗ the sample area.
Using the interaction potential given by equation (3) the reduced Lamé constants then read

µ∗ = 9�

(πρ∗)3 A∗ δF[�xi j�yi j,�xi j�yi j, ri j ] +
15

(πρ∗)3/2 A∗ G[�xi j�yi j, ri j ] − 3U∗

2A∗ (5)

λ∗ = 9�

(πρ∗)3 A∗ δF[(�xi j)
2, (�yi j)

2, ri j ] +
15

(πρ∗)3/2 A∗ G[�xi j�yi j , ri j ] + ρ∗T ∗ +
3U∗

2A∗ (6)

where �xi j and �yi j represent the x and y Cartesian coordinates of the inter-particle
separation vector ri − r j of modulus ri j and the reduced internal energy U∗ is given
by U∗ = (πρ∗)−3/2 ∑

i,i< j r−3
i j . In addition, we have defined the ‘fluctuation function’,

δF(ζi j , ηi j , θi j) := 〈∑i,i< j ζi j/θ
5
i j〉〈

∑
i,i< j ηi j/θ

5
i j〉 − 〈(∑i,i< j ζi j/θ

5
i j)(

∑
i,i< j ηi j/θ

5
i j)〉 and a

function G(ηi j , θi j) := 〈∑i,i< j η2
i j/θ

7
i j〉. In the zero-temperature limit � → ∞ ⇒ {δF → 0,

G → (1/8)
∑

i,i< j θ−3
i j } the Lamé constants λ∗ and µ∗ converge toward 3.114 and 0.346,

respectively.
We evaluated equations (5) and (6) as a function of the inverse temperature � using MC

simulations, for a system of particles interacting according to equation (3). The results are
depicted in figure 1. These simulations were performed using 625 particles in a periodically
replicated rectangular unit cell, corresponding to a 25 × 25 super-cell of an unstrained lattice.
This is a fairly small system which does not allow us to study transitions from solid to
hexatic phases [14]. However, it may be considered appropriate as our analysis focuses on the
temperature dependence of the elastic constants deep in the solid phase. On increasing the
total number of particles up to 2000, the shear modulus, µ∗, for instance, changes by less than
4%. We have suppressed the long-range part of the potential for radii bigger than a cut-off
radius rc = 9.74. However, we have added the usual long-range correction terms [15] to
correct for the truncation of the sums in U∗, G and δF . The results are almost insensitive
(<2% deviation) to the cut-off radius. We have started the calculation with � = 1000 using
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Figure 1. Monte Carlo evaluation of the elastic moduli given by equations (5) and (6) (empty
squares) as a function of the inverse temperature �. In the left panel these data have been fitted and
extrapolated to the inverse melting temperature �m = 60 (thin solid line). Thick lines represent
the elastic moduli as predicted by [2], dashed lines are the zero-temperature moduli. Full dots
correspond to experimental data taken from [7].

an unstrained lattice as initial configuration, propagating it for typically 100 000 time steps.
At � = 1000 we were able to reproduce the T = 0 values of the elastic constants. Near the
melting point, at �m = 60, we have not been able to obtain converged results even for larger
systems or considerably longer runs. The accessible �-range was 1000 > � > 75 for the
computation of µ∗ and λ∗. These convergence difficulties near the transition are well-known
and are thoroughly discussed in [16].

In figure 1 we compare the Lamé elastic constants predicted by the KTHNY theory (full
thick lines) to experimental data of [7] (full dots) as well as to our MC simulations (empty
squares). The MC data now reveal that for λ∗ + 2µ∗ the T = 0 assumption is indeed a valid
approximation for a broad range of � values, down to values as low as � = 75. µ∗, on
the other hand, shows a strong temperature effect; the T = 0 approximation is reasonable
only at much higher values of � (� > 500). The softening of the elastic constants at higher
� (� > 85, see below) is not caused by topological defects, but is mainly due to higher
anharmonic terms. From the known band-structure of this system [8], one could in principle
calculate the thermal softening of the crystal [17]. More general considerations also show [17]
that the transverse elastic constant should suffer much stronger from thermal softening than
the longitudinal constant which is indeed what we here observe. We have fitted the simulation
data of µ∗� to a straight line and obtained µ∗� = 0.343(� − 11.39) as the fit formula, which
is plotted as solid thin line in the left panel of figure 1.

By means of this curve we can extrapolate the effect of thermal softening on µ∗ down to
the melting point at �m = 60, leading to a value of µ = 0.28 at �m. This is the value that
one would expect to find if the softening was produced exclusively by the phonon–phonon
interaction in a perfect, i.e. defect-free, system. However, the experimental data points of
the elastic constants at �m = 60 are in fact much smaller. This extra softening is due to
interacting dislocations, as predicted by the KTHNY theory. The KTHNY curve in figure 1
was obtained from integrating the renormalization-group equations in [2] using the T = 0
value λ∗ = 3.114 for the longitudinal constant and the fit formula µ∗� = 0.343 ∗ (� − 11.39)

for the transversal constant to set up the boundary conditions at � → ∞. Solution of these
equations requires also a value for the dislocation core energy Ec, a quantity which is hard to
compute directly. We have therefore taken Ec to be a variable which was chosen such that the
resulting elastic constants vanish at the known melting temperature of �m = 60. We found Ec
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Figure 2. The Young’s modulus as defined in equation (1) as a function of � for our 2D colloidal
crystal (pair interaction ∼�/r3) and for a 2D electron crystal (interaction ∼�/r). In both systems,
the Young’s modulus has been approximated using elastic constants (i) from a T = 0 calculation
(dashed lines), (ii) from a finite temperature simulation (solid line) and (iii) from integrating the
renormalization-group equations of the KTHNY theory (thick solid line). Experimental values are
taken from [7] (colloids) and from [21] (electrons).

to be 5.7kT . The resulting KTHNY curve already reaches its limiting curves for � ≈ 85, where
the renormalization ceases to produce an effect. Thus, it is in the range 60 < � < 85 where the
dislocations are expected to soften the elastic constants, in addition to the thermal softening.
And, indeed, in this regime the experimental data points seem to confirm the predictions of
the KTHNY theory.

Having µ∗ and λ∗ at hand we can easily compute the Young’s modulus K , equation (1),
plotted in figure 2 as a function of �. The simulation data are shown as empty squares,
and are fitted to a straight line (K (�) = 1.258 (� − 11)). This line is shifted relative
to the T = 0 approximation of the Young’s modulus, K (�) = 1.258� (dashed line), an
expression which one obtains by inserting λ∗ = 3.114 and µ∗ = 0.346 in (1). This shift
results from the temperature dependence of µ∗ which is the dominant constant in (1), and can
be attributed to phonon–phonon interactions. Applying the Kosterlitz–Thouless criterion for
melting, equation (2), one would predict the system to melt at � = 40 relying on the T = 0
approximation of K , and at � = 51 if the thermal softening is taken into account. However,
the crystal melts at �m = 60, and the experimental data points closely follow the KTHNY
curve, and cross 16π very close to �m = 60. Thus, the unbinding temperature is equal to
the melting temperature. This is the main finding of [7]. However, in [7] we compared the
experimental data points to a KTHNY curve converging to the T = 0 curve of K , while
now we have included the temperature dependence of K by allowing the KTHNY curves to
converge to K (�) = 1.258(�−11). The data points and the KTHNY curves still agree within
the experimental error bars. The essential conclusion here is that judged on the basis of a
thermally softened K one would expect the Young’s modulus to pass 16π at � = 51, while
including the additional effect of the dislocations onto K leads to a crossing of the 16π line at
a higher value of � (�m = 60). This difference shows that the temperature dependence of K is
not only produced by interacting phonons, but near �m also by dislocations. This is important
supplementary information completing the conclusions drawn in [7]. We should, however,
remark that from these observations we can infer nothing regarding the order of the transition.

We next compare our results to the corresponding curves for a 2D electron solid on
the surface of liquid helium, an experimental system that in the past has received much
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attention. Here, the interaction is βu(r) = �/(
√

πρr), where � = √
πρβe2 (e is the electron

charge, ρ the area density). The T = 0 values for the elastic constants are [19] λ = ∞
and µ = 0.245 065e2ρ3/2, so µ∗ = 0.159 65. Inserting these values in (1), one obtains
K (�) = 0.6386�, plotted as a dashed line in figure 2. This line crosses 16π at � = 78.7, an
estimate for the melting temperature first given by Thouless [18]. Later Morf [20] determined
the temperature dependence of the shear modulus of the 2D electron solid in a computer
simulation and fitted his data points to K (�) = 0.6386(� − 30.8), which in figure 2 is seen to
cross 16π at � = 109.5. Morf then solved the renormalization relations in [2], taking this curve
to define the boundary conditions plus an estimated value for Ec, and was thus able to predict a
melting temperature of �m = 128.2. Figure 2 now shows the experimental data points for a 2D
electron system on helium as obtained by Gallet et al [21] from a measurement of the coupled
electron–substrate transverse sound mode for three different electron densities. All three data
sets pass through 16π at a common value of � which is near to 143, but unfortunately fail to fall
onto a common curve as one would expect them to do. These data points are to be compared to
the KTHNY curve (thick solid curve in figure 2) which we here computed following the same
recipe as used for our colloidal system (T = finite values of K at � → ∞ and variation of Ec

to reproduce a given �m; resulting in Ec = 5.4kT ). At least one experimental data set is now
in good agreement with the curve predicted by the KTHNY theory. It is interesting to compare
the sequence of melting points predicted by (2) on the basis of different approximations for
K in the electron system (interaction ∼�/r ) and the colloidal system (interaction ∼�/r3). In
the electron system we have for �m the values 78.7 → 109.5 → 143, while in the colloid
system we find 40 → 51 → 60, estimating the Young’s modulus first by the T = 0, then
by the T = finite approximation and finally through its renormalized values. The shrinking
of the range covered by these three melting temperatures in going from a �/r to a �/r3 pair
potential seem to suggest that a more short-ranged potential such as �/r5 would lead to an
even smaller interval for these three temperatures, making it obviously increasingly difficult
to distinguish between a defect-mediated and a phonon-mediated melting.

3. Experiment: temperature dependence of the relative mean-square displacement

We now again process the video-microscopy data of [7]. These data are based on the sampling
of approximately 2000 particle trajectories (taken from a pool of roughly 105 particles) typically
recorded for 2 h leading to about 3600 configurations. It is the extremely long equilibration
time plus the huge system size that sets the experimental real-space data most prominently apart
from data obtained from ordinary simulation. In what follows we again check the experimental
elastic constants obtained in [7] and plotted in figure 1, but now compute the elastic constants
directly from real-space data without first transforming to the reciprocal space. We investigate
the dependence of the mean-square relative displacement

〈Wi j (|Ri − R j |)〉 = 〈[u(Ri) − u(R j)]2〉, (7)

with u(Ri) = ri − Ri and the lattice site denoted by Ri . Experimentally we associate the
average of all configurations, 〈ri 〉texp , with a lattice site. One important result of the KTHNY
theory is that for large lattice-site separation |Ri −R j | the mean-square relative displacement
asymptotically approaches [2]

〈Wi j (|Ri − R j |)〉 → η(�) ln(|Ri − R j |/L) + C(�), (8)

with slope

η = λ∗ + 3µ∗

π�µ∗(λ∗ + 2µ∗)
(9)
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Figure 3. Left panel: thermal average of the mean-square relative displacement, 〈Wij 〉, of a 2D
colloidal crystal as a function of the lattice site separation, Rij = |Ri − R j |, for various inverse
temperatures, �. The thick lines represent curves according to (8) with an η as predicted by [2].
Right panel: experimental, simulational and theoretical values for η� as a function of the inverse
temperature. This plot is the pendant to figure 2: like K → 16π , η must pass 1.496 at the melting
transition if the crystals melts according to the KTHNY theory.

and some irrelevant constants L and C . At Tm, η becomes an universal function of the 2D
Poisson’s ratio σ = λ∗/(λ∗ + 2µ∗), and can be written, using (2), as [2]

lim
T →T −

m

η = 1

16π2
lim

T →T −
m

(1 + σ)(3 − σ) (10)

which approaches 1/(4π2) for σ = 1 and 0.985/(4π2) for σ = 0.751, the value we find in
our case at hand taking λ∗ and µ∗ at �m = 60 from figure 1. Accordingly, η� goes to 1.496
at �m = 60. Equation (10) may be considered as the real-space counterpart of equation (2),
and is here checked with values of η obtained from exploiting (8).

The left panel of figure 3 is a logarithmic plot of 〈Wi j (|Ri − R j |)〉 as a function of
|Ri − R j | evaluated from experimental data (points) for four different temperatures. At low
temperatures, we indeed obtain straight lines from which we can easily determine η. For higher
temperatures (� = 65), slightly above T ∗

m, we notice three different regimes. At very large
distance, the curve shows an up-bending which still depends on the number of configurations
processed and is probably due to insufficient sampling. 〈Wi j (|Ri − R j |)〉 at small distances is
also not useful, as (8) is valid only for large values of Ri j . We have therefore tried to identify the
intermediate regime1, and determined the slope only from these data points. The right panel in
figure 3 shows η�, thus determined, as a function of � (diamonds). These data are compared
to values of η� obtained from (9) with elastic constants determined (i) experimentally in [7]
in q-space, and (ii) following the renormalization procedure of [2] (solid lines in figure 1).
The good agreement between the experimental data points derived in q- and r-space validates
once more the method we applied in [7] to derive elastic constants. We also observe that η

crosses the value predicted by (10) very close to the melting temperature �m = 60, just like K
passes through 16π at �m, pointing again to a KTHNY melting scenario. We should finally
remark that determining elastic constants via (8) is not always unproblematic near Tm, where
it can become difficult to identify the relevant intermediate regime. To demonstrate that also

1 We first identified the largest distance Rmax
i j below which the data do not suffer from a dependence on system-size or

total measurement time. The interval [0, Rmax
i j ] was then separated into two adjacent intervals [0, Rx

i j ] and [Rx
i j , Rmax

i j ]
by setting Rx

i j , and independent fits ∼ log Rij were made in both intervals. The final Rx
i j were finally chosen such as

to optimize the fits in both intervals. [Rx
i j , Rmax

i j ] is then the intermediate regime.
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the temperature dependence of η is well estimated by KTHNY theory, it is therefore probably
better to compare the experimental 〈Wi j 〉 to curves following equation (8) with an η estimated
from the KTHNY theory, as illustrated in the left panel of figure 3.
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